Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Potassium oxoantimonate(V), K₃[SbO₄]

Christian Hirschle, Jürgen Rosstauscher and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 15 August 2001 Accepted 31 August 2001

The oxoantimonate K₃[SbO₄] crystallizes in the monoclinic space group P2/c with the Na₃[BiO₄] structure type. The structure contains chains of [SbO₆] octahedra connected *via* common edges. All K and Sb atoms lie on twofold axes, *i.e.* $0,y,\frac{1}{4}$ or $\frac{1}{2},y,\frac{1}{4}$.

Comment

In the crystal structures of the known alkali metal (A)antimonates(V), [SbO₆] octahedra form the important structural building blocks. In compounds with a low alkali metal content, these octahedra are connected via common edges to form complex three-dimensional channel structures (A = K): Hong, 1974; A = Rb or Cs: Hirschle et al., 2001). A similar structural chemistry is exhibited by compounds of the formula AMO₃, which are known for nearly all alkali metals and which display the ilmenite or the defect pyrochlore structure. In the series of alkali-metal-rich antimonates A₃SbO₄, only the first (A = Li: Skakle et al., 1996) and the last (A = Cs: Hirschle &)Röhr, 2000) members have been characterized by singlecrystal data. Hoppe and co-workers (Schwedes & Hoppe, 1972) inferred from indexed powder patterns that Na₃SbO₄ is isotypic with the Li compound, and unindexed powder patterns by Duquenoy (Duquenoy, 1974; Josien & Duquenoy, 1980) indicate an isotypic relationship between the Rb and Cs compounds. Whereas the crystal structures of the Li (and Na) phases show chains of edge-sharing [SbO₆] octahedra, the Cs (and Rb) compounds are characterized by isolated $[SbO_4]^{3-1}$ tetrahedra. The title compound is thus at the boundary between two structure families, which makes it a likely candidate for polytypic behaviour.

K₃[SbO₄] crystallizes in the monoclinic space group P2/c with the Na₃[BiO₄] (Schwedes & Hoppe, 1972) structure type. In the crystal structure, $[SbO_2O_{4/2}]^{3-}$ octahedra are connected *via* two *trans*-oriented edges to form chains running parallel to the crystallographic *c* axis (Fig. 1); the Sb atoms are located on the twofold axis at $\frac{1}{2}y_1\frac{1}{4}$.

The two terminal Sb-O bond lengths are 1.949 (6) Å (Sb-O1), whereas the bridging Sb-O bonds (Sb-O2) are

significantly longer, at 2.047 (6) and 2.091 (6) Å. The O-Sb-O bond angles in the octahedra vary from 78.4 (3) to 95.7 (2)°.

The three crystallographically independent K⁺ cations all lie on twofold axes {K1: $\frac{1}{2}$,y, $\frac{1}{4}$ [2(f)]; K2 and K3: 0,y, $\frac{1}{4}$ [2(e)]} and are also located at the centres of the O-octahedra [K–O 2.266 (6)–2.657 (7) Å]. The structure can thus be alternatively described as a cubic close-packed arrangement of O²⁻ ions, with the K⁺ and Sb⁵⁺ cations located in all the octahedral holes, *i.e.* an order variant of the NaCl structure.

Figure 1

A view of the chain of $[SbO_6]$ octahedra in $K_3[SbO_4]$ shown with 75% probability displacement ellipsoids. Symmetry codes are as given in Table 1.

Figure 2

Views of the unit cell of $K_3[SbO_4]$ in two orientations, (*a*) view perpendicular to the *bc* plane and (*b*) a perspective view. Light-grey spheres denote K atoms, light-grey octahedra denote [SbO₆] and dark-grey spheres denote O atoms.

inorganic compounds

Whereas the corresponding Li (Skakle et al., 1996) and Na (Schwedes & Hoppe, 1972) compounds are isotypic with the title compound, Cs₃[SbO₄] (Hirschle & Röhr, 2000) and Rb₃[SbO₄] (only characterized *via* indexed powder patterns) form structures with isolated [SbO₄]³⁻ tetrahedra and significantly shorter Sb-O bond distances. The main differences between the two structure families are also easily seen in the Raman spectra of $Cs_3[SbO_4]$ and the title compound (Fig. 3).

In the Cs compound, the totally symmetric stretching mode of the slightly distorted [SbO₄] tetrahedra gives rise to strong bands at 710 and 722 cm⁻¹ (Sb-O 1.78-1.89 Å). In the spectrum of $K_3[SbO_4]$, the Sb–O stretching modes are shifted towards smaller wavenumbers: the band at 670 cm^{-1} can be assigned to the terminal Sb-O stretching mode [Sb-O1 1.949 (6) Å], while the two bands at 607 and 567 cm⁻¹ result from the two longer bridging Sb–O2 bonds.

Experimental

Single crystals of K₃[SbO₄] were obtained from stoichiometric mixtures of K (223.7 mg, 5.72 mmol), KO₂ (293.7 mg, 4.12 mmol) and Sb₂O₃ (482.6 mg, 1.65 mmol). The samples were heated to 975 K in corundum crucibles under an argon atmosphere, and then cooled to 575 K at a rate of 5 K h^{-1} and to room temperature at a rate of 15 K h^{-1} . The X-ray powder patterns of the reaction products can be indexed on the basis of the reported single-crystal data, but show additional weak reflections that cannot be assigned to any known phase. The colourless hygroscopic crystals of the title compound were handled in a dry box and mounted in capillaries filled with dry oil. Room-temperature Raman spectra of single crystals of K₃[SbO₄] and Cs₃[SbO₄], sealed in Lindemann capillaries, were recorded with a Raman microscope attached to an FT spectrometer (Bruker IFS-66V).

Crystal data

$K_3[SbO_4]$	$D_x = 5.153 \text{ Mg m}^{-3}$
$M_r = 303.05$	Mo $K\alpha$ radiation
Monoclinic, P2/c	Cell parameters from 907 reflections
a = 5.7971 (12) Å	$\theta = 3.1 - 28.3^{\circ}$
b = 6.5933 (14) Å	$\mu = 10.14 \text{ mm}^{-1}$
c = 5.4179 (12) Å	T = 293 (2) K
$\beta = 109.394 \ (4)^{\circ}$	Irregular, colourless
V = 195.33 (7) Å ³	$0.20 \times 0.15 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer (i) scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.192, \ T_{\max} = 0.363$ 1160 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$ S = 1.24468 reflections 40 parameters $w = 1/[\sigma^2(F_o^2) + (0.0848P)^2]$ + 0.0284P] where $P = (F_o^2 + 2F_c^2)/3$

468 independent reflections 422 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$ $\theta_{\rm max} = 28.3^{\circ}$ $h = -6 \rightarrow 7$ $k=-8\rightarrow7$ $l = -7 \rightarrow 6$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 3.32 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -2.83 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.128 (16)

Table 1

Selected geometric parameters (Å, °).

Sb1-O1 ⁱ	1.949 (6)	O1-K3 ^v	2.266 (6)
Sb1-O2 ⁱⁱ	2.047 (6)	O1-K3	2.585 (7)
Sb1-O2 ⁱⁱⁱ	2.091 (6)	O2-K1	2.370 (6)
O1-K1	2.387 (6)	O2-K2 ^{vi}	2.355 (6)
O1-K1 ^{iv}	2.355 (6)	O2-K2	2.561 (6)
O1-K2	2.279 (6)	O2-K3 ^{vii}	2.657 (7)
	02.0.(2)		170.2 (2)
01 [.] -Sb1-01	93.8 (3)	O1'' - Sb1 - O2'''	170.2 (2)
$O1^{i}$ -Sb1- $O2^{ii}$	95.7 (2)	$O2^n - Sb1 - O2^m$	78.4 (3)
$O1^{iv}$ -Sb1- $O2^{ii}$	92.3 (2)	$O2^{viii}$ -Sb1- $O2^{iii}$	93.1 (2)
O2 ⁱⁱ -Sb1-O2 ^{viii}	168.3 (3)	O2 ⁱⁱⁱ -Sb1-O2 ^{ix}	87.6 (3)
O1 ⁱ -Sb1-O2 ⁱⁱⁱ	90.1 (3)		

Symmetry codes: (i) $x, 1-y, z-\frac{1}{2}$; (ii) 1-x, 1-y, -z; (iii) x, 1+y, z; (iv) 1 - x, 1 - y, 1 - z; (v) -x, 1 - y, 1 - z; (vi) -x, -y, -z; (vii) -x, 1 - y, -z; (viii) $x, 1 - y, \frac{1}{2} + z;$ (ix) $1 - x, 1 + y, \frac{1}{2} - z.$

Because of the slightly higher values of the atomic displacement parameters of the K atoms, the site occupancies of the three positions were refined for testing purposes, converging on the ideal value of 0.5 to within experimental error. The maximum difference peak of 3.32 e $Å^{-3}$ lies 0.83 Å from Sb1 and may be attributed to residual absorption errors.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1999); software used to prepare material for publication: SHELXL97.

We thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and Dr H.-W. Rotter and A. Becherer for recording the Raman spectra.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1475). Services for accessing these data are described at the back of the journal.

References

- Bruker (1999). SMART and SAINT. Versions 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duquenoy, G. (1974). Rev. Chim. Mineral. 11, 474-480.
- Finger, L. & Kroeker, M. (1999). DRAWxtl; http://www.lwfinger.net/drawxtl. Hirschle, C. & Röhr, C. (2000). Z. Anorg. Allg. Chem. 626, 1305–1312.

- Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. Teil B , 56, 169–178.
- Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.
- Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]
- Josien, F.-A. & Duquenoy, G. (1980). Rev. Chim. Mineral. 17, 40-45.
- Schwedes, B. & Hoppe, R. (1972). Z. Anorg. Allg. Chem. 393, 136-148.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Skakle, J. M. S., Castellanos, M., Tovar, S. T., Fray, S. M. & West, A. R. (1996). J. Mater. Chem. 6, 1939–1942.