Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Potassium oxoantimonate(V), $K_3[SbO_4]$

Christian Hirschle, Jürgen Rosstauscher and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraûe 21, D-79104 Freiburg, Germany Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 15 August 2001 Accepted 31 August 2001

The oxoantimonate $K_3[SbO_4]$ crystallizes in the monoclinic space group $P2/c$ with the Na₃[BiO₄] structure type. The structure contains chains of $[SbO₆]$ octahedra connected via common edges. All K and Sb atoms lie on twofold axes, i.e. $0, y, \frac{1}{4}$ or $\frac{1}{2}, y, \frac{1}{4}$.

Comment

In the crystal structures of the known alkali metal (A) antimonates(V), $[SbO_6]$ octahedra form the important structural building blocks. In compounds with a low alkali metal content, these octahedra are connected via common edges to form complex three-dimensional channel structures $(A = K$: Hong, 1974; $A = Rb$ or Cs: Hirschle *et al.*, 2001). A similar structural chemistry is exhibited by compounds of the formula $AMO₃$, which are known for nearly all alkali metals and which display the ilmenite or the defect pyrochlore structure. In the series of alkali-metal-rich antimonates A_3SbO_4 , only the first $(A = Li: Skakle et al., 1996)$ and the last $(A = Cs: Hirschle &$ Röhr, 2000) members have been characterized by singlecrystal data. Hoppe and co-workers (Schwedes & Hoppe, 1972) inferred from indexed powder patterns that $Na₃SbO₄$ is isotypic with the Li compound, and unindexed powder patterns by Duquenoy (Duquenoy, 1974; Josien & Duquenoy, 1980) indicate an isotypic relationship between the Rb and Cs compounds. Whereas the crystal structures of the Li (and Na) phases show chains of edge-sharing $[SbO₆]$ octahedra, the Cs (and Rb) compounds are characterized by isolated $[SbO₄]$ ³⁻ tetrahedra. The title compound is thus at the boundary between two structure families, which makes it a likely candidate for polytypic behaviour.

 K_3 [SbO₄] crystallizes in the monoclinic space group $P2/c$ with the $\text{Na}_3[\text{BiO}_4]$ (Schwedes & Hoppe, 1972) structure type. In the crystal structure, $\left[\text{SbO}_2\text{O}_{4/2}\right]^{3-}$ octahedra are connected via two trans-oriented edges to form chains running parallel to the crystallographic c axis (Fig. 1); the Sb atoms are located on the twofold axis at $\frac{1}{2}$, $y, \frac{1}{4}$.

The two terminal Sb $-$ O bond lengths are 1.949 (6) \AA (Sb $-$ O1), whereas the bridging $Sb-O$ bonds $(Sb-O2)$ are significantly longer, at 2.047 (6) and 2.091 (6) \AA . The O $-Sb$ O bond angles in the octahedra vary from 78.4 (3) to 95.7 (2) $^{\circ}$.

The three crystallographically independent K^+ cations all lie on twofold axes $\{K1: \frac{1}{2},y,\frac{1}{4} [2(f)]; K2 \text{ and } K3: 0,y,\frac{1}{4} [2(e)]\}$ and are also located at the centres of the O-octahedra $[K-O]$ 2.266 (6)–2.657 (7) Å]. The structure can thus be alternatively described as a cubic close-packed arrangement of O^{2-} ions, with the K^+ and Sb^{5+} cations located in all the octahedral holes, *i.e.* an order variant of the NaCl structure.

Figure 2

Views of the unit cell of $K_3[SbO_4]$ in two orientations, (a) view perpendicular to the bc plane and (b) a perspective view. Light-grey spheres denote K atoms, light-grey octahedra denote $[SbO₆]$ and darkgrey spheres denote O atoms.

Whereas the corresponding Li (Skakle et al., 1996) and Na (Schwedes & Hoppe, 1972) compounds are isotypic with the title compound, $Cs_3[SbO_4]$ (Hirschle & Röhr, 2000) and $Rb_3[SbO_4]$ (only characterized *via* indexed powder patterns) form structures with isolated $[SbO₄]³⁻$ tetrahedra and significantly shorter Sb-O bond distances. The main differences between the two structure families are also easily seen in the Raman spectra of $Cs₃[SbO₄]$ and the title compound (Fig. 3).

In the Cs compound, the totally symmetric stretching mode of the slightly distorted [SbO₄] tetrahedra gives rise to strong bands at 710 and 722 cm⁻¹ (Sb-O 1.78-1.89 A). In the spectrum of $K_3[SbO_4]$, the Sb – O stretching modes are shifted towards smaller wavenumbers: the band at 670 cm^{-1} can be assigned to the terminal $Sb-O$ stretching mode $[Sb-O1]$ 1.949 (6) \AA , while the two bands at 607 and 567 cm⁻¹ result from the two longer bridging $Sb - O2$ bonds.

Experimental

Single crystals of K_3 [SbO₄] were obtained from stoichiometric mixtures of K (223.7 mg, 5.72 mmol), KO_2 (293.7 mg, 4.12 mmol) and $Sb₂O₃$ (482.6 mg, 1.65 mmol). The samples were heated to 975 K in corundum crucibles under an argon atmosphere, and then cooled to 575 K at a rate of 5 K h^{-1} and to room temperature at a rate of 15 K h^{-1} . The X-ray powder patterns of the reaction products can be indexed on the basis of the reported single-crystal data, but show additional weak reflections that cannot be assigned to any known phase. The colourless hygroscopic crystals of the title compound were handled in a dry box and mounted in capillaries filled with dry oil. Room-temperature Raman spectra of single crystals of $K_3[SbO_4]$ and $Cs₃[SbO₄]$, sealed in Lindemann capillaries, were recorded with a Raman microscope attached to an FT spectrometer (Bruker IFS-66V).

Crystal data

Data collection

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$ $S = 1.24$ 468 reflections 40 parameters $w = 1/[\sigma^2 (F_o^2) + (0.0848P)^2]$ + 0.0284P] where $P = (F_o^2 + 2F_c^2)/3$

 $R_{\rm int} = 0.033$ $\theta_{\text{max}} = 28.3^{\circ}$ $h = -6 \rightarrow 7$ $k = -8 \rightarrow 7$ $l = -7 \rightarrow 6$ $(\Delta/\sigma)_{\text{max}} < 0.001$

468 independent reflections 422 reflections with $I > 2\sigma(I)$

 $\Delta\rho_{\rm max}$ = 3.32 e ${\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -2.83$ e $\rm \AA^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.128 (16)

Table 1

Selected geometric parameters (\AA, \degree) .

Symmetry codes: (i) $x, 1 - y, z - \frac{1}{2}$; (ii) $1 - x, 1 - y, -z$; (iii) $x, 1 + y, z$; (iv) 1 - x, 1 - y, 1 - z; (v) - x, 1 - y, 1 - z; (vi) - x, - y, - z; (vii) - x, 1 - y, - z; (viii) x, 1 - y, $\frac{1}{2}$ + z; (ix) 1 - x, 1 + y, $\frac{1}{2}$ - z.

Because of the slightly higher values of the atomic displacement parameters of the K atoms, the site occupancies of the three positions were refined for testing purposes, converging on the ideal value of 0.5 to within experimental error. The maximum difference peak of 3.32 e A^{-3} lies 0.83 Å from Sb1 and may be attributed to residual absorption errors.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1999); software used to prepare material for publication: SHELXL97.

We thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and Dr H.-W. Rotter and A. Becherer for recording the Raman spectra.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1475). Services for accessing these data are described at the back of the journal.

References

- Bruker (1999). SMART and SAINT. Versions 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duquenoy, G. (1974). Rev. Chim. Mineral. 11, 474-480.
- Finger, L. & Kroeker, M. (1999). DRAWxtl; http://www.lwfinger.net/drawxtl. Hirschle, C. & Röhr, C. (2000). Z. Anorg. Allg. Chem. 626, 1305-1312.
- Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. Teil B , 56, 169-178.
- Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.
- Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]
- Josien, F.-A. & Duquenoy, G. (1980). Rev. Chim. Mineral. 17, 40-45.
- Schwedes, B. & Hoppe, R. (1972). Z. Anorg. Allg. Chem. 393, 136-148.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Skakle, J. M. S., Castellanos, M., Tovar, S. T., Fray, S. M. & West, A. R. (1996). J. Mater. Chem. 6, 1939-1942.